9.3 阻力

在 9.1 節中我們討論過,在流體中移動的任何物體將受到阻力 3 的作用 — 亦即由作用在物體表面的壓力和剪力,在流動方向所形成的淨力。該淨力 乃是由作用在物體上之法向與切線力於流動方向分量之組合。同時,若壓力分 布 *p* 及壁面剪應力 *τ*_w 為已知,則可由式 (9.1) 及 (9.2) 求出該淨力。不過僅 在極少數的流動實例中,得以解析的方式獲得壓力與壁面剪應力分布。在 9.2 節中,所討論的流經平行於上游流的平板邊界層流即為其中一例。

大部分的阻力數據都是來自於等比例模型實驗的量測,該實驗使用了包括 風洞、水洞、拖曳桶或其他精妙的裝置。如在第7章的討論得知,利用模型測 得的實驗數據若以無因次形式表示,結果與原型計算值會成適當的比例關係。 對任何形狀物體而言,通常以阻力係數 *C_p*表示之

$$C_D = \frac{\mathfrak{D}}{\frac{1}{2}\rho U^2 A} \tag{9.21}$$

其中 C_D 為其他無因次參數,諸如雷諾數 Re、馬赫數 Ma、福勞得數 Fr,以及 表面相對粗糙度 ε/ℓ 等函數,亦即

 $C_D = \phi$ (形狀, Re, Ma, Fr, ε/ℓ)

9.3.1 摩擦阻力

摩擦阻力 (friction drag) \mathfrak{D}_{f} 是構成總阻力的一部分,乃由作用於物體表面的剪應力 τ_{w} 所貢獻。摩擦阻力不僅是壁面剪應力的函數,也與物體表面的方位有關 (與入流的夾角),在式 (9.1) 中的 $\tau_{w}\sin\theta$ 便已指出。倘若物體表面與流體速度平行,則整個阻力值便由剪應力單獨貢獻。當表面與流速互相垂直時,剪應力對整體的阻力值便毫無貢獻。對高度流線形的物體或低雷諾數的流動而言,其阻力皆來自於摩擦的貢獻。

寬為 b、長為 l, 並平行於上游流之平板, 其摩擦阻力之計算式為

$$\mathcal{D}_f = \frac{1}{2} \rho U^2 b \ell C_{Df}$$

其中 C_{Df} 是摩擦阻力係數,且為雷諾數 $\operatorname{Re}_{\ell} = \rho U \ell / \mu$ 與表面相對粗糙度 ε / ℓ 的函數,如圖 9.13 與表 9.1 所示。

9-2 🚫 Chapter 9 經過沉體的流動

9.3.2 壓力阻力

壓力(形狀)阻力 是由垂直應力所形 成的阻力。 **壓力阻力** (pressure drag) ③_p 亦為阻力的一種,並與物體的壓力 p 有直接 之關係。壓力阻力又稱為形狀阻力 (form drag),因為它與物體的形狀有極度 密切關聯。壓力阻力乃取決於壓力的大小以及作用面的方向角。舉例而言,在 平板流上下側的壓力可能相當大,但壓力是垂直於平板 (或自由流速)的方 向,所以不會形成阻力。但是,當平板垂直於流動方向時,全部阻力將由壓力 所造成。

如前所述,大多數物體的表面有部分平行於上游流,有部分垂直於上游 流,也有大部分與上游流度呈一定角度,如右側邊欄圖所示。若物體的壓力分 布已知,且外形確定,則式 (9.1) 為壓力阻力的計算式

$$\mathfrak{D}_p = \int p \cos \theta \, dA$$

若以壓力阻力係數 (pressure drag coefficient) C_{Dp} 表示則為

$$C_{Dp} = \frac{\mathfrak{D}_p}{\frac{1}{2}\rho U^2 A} = \frac{\int p\cos\theta \, dA}{\frac{1}{2}\rho U^2 A} = \frac{\int C_p\cos\theta \, dA}{A}$$
(9.22)

壓力係數是一種壓 力的無因次化形 式。 其中 $C_p = (p - p_0)/(\rho U^2/2)$ 稱為壓力係數 (pressure coefficient), p_0 為參考壓力。參考壓力 p_0 的大小並不會直接影響阻力,因為若物體表面的參考壓力皆是定值 (即 p_0),則壓力的淨力為零。

9.3.3 阻力係數數據與實例

在上一節討論過,淨阻力是由壓力和剪應力效應產生的,而在多數的情形下,這兩種效應都會被一起考慮,並以由式 (9.21)所定義之總阻力係數 C_D 表示之。讀者可在許多參考文獻中充分獲得有關總阻力係數的數據,這些資料幾乎包括流經任何的形狀、不可壓縮及可壓縮流體所形成的流場。本節中僅考慮一小部分之數據來描述一些代表性的流動狀況,其他數據可參考相關的文獻。

形狀相依性 物體的阻力係數很顯然地與物體形狀相關,這些形狀涵蓋流線 形以至鈍形。今以長寬比為 ℓ/D 之橢圓形體來敘述形狀相依性,其中 D 與 ℓ 分別表示平行於流動的厚度與長度。如**圖** 9.16 所示者為以正面面積 A=bD 為 基準之阻力係數 $C_D = \mathfrak{D}/(\rho U^2 b D/2)$,其中 b 為垂直流動方向的長度。越是鈍 形的物體,其阻力係數越大。當 $\ell/D = 0$ 時(即垂直於流動之平板),阻力係

9.3 阻力 🚫 9-3

 $Re = \frac{UD}{V} = 10^5$

b = 長

數值 $C_D = 1.9$ 。當 $\ell/D = 1$,即得圓柱體的阻力係數。且當 ℓ/D 值越大時, C。 值就越小。

對於長寬比相當大 (ℓ/D→∞) 的橢圓形體而言,可視之為平行流動的平 阻力係數可以以頂 部俯瞰面積或正面 板,因而摩擦阻力遠大於壓力阻力,若以正面面積 A = bD 為基準的 C_p 值, 面積為基準。 將伴隨著 ℓ/D 的增加而增大。對於極端薄形的物體 (亦即 ℓ/D→∞ 的橢圓

2.5

2.0

1.5

 C^{D}

形體、平板或薄翼型體)而言,一般採用俯瞰 面積 A=bℓ 來定義阻力係數。畢竟,對於薄形 物體而言,剪應力主要是作用在頂部的俯瞰面 積,而不是正面的面積。以俯瞰面積定義的阻 力係數為 $C_p = \mathfrak{D}/(\rho U^2 b \ell/2)$, 其變化關係顯示 於圖 9.16 中。很明顯地,以任一阻力係數所求 得的阻力都將相同,我們只是以兩種不同的方 法整合相同的涵義。

在設計時,雖然我們經常想要將阻力最小 化,但這並非唯一的目標。比如在設計熱交換 器或流體混合槽時,我們可能會想要利用邊界 層分離及其隨後的尾流來提高混合效率,這時 阻力值就必須設計得較高些。另一方面,如果 要設計低阻力形狀,請記住兩個重要原則:

1.0 $C_D =$ $\rho U^2 b \dot{D}$ 平行流動的平板 $\rho U^2 b\ell$ $\frac{\ell}{D}$

D

垂直流動的平板

U

圖 9.16 以正面面積 A=bD 或俯瞰面積 A=bℓ 為 特性面積的橢圓形體阻力係數

- 如果物體是細長的(即流線形,如平行平板或機翼),摩擦力便是造成 阻力的主要機制。若能盡量將流場保持在層流狀態便可大幅減少阻力,這 個條件暗示物體表面必須盡量光滑。再者,如果物體具有厚度 (如機 翼),則物體形狀的選擇應盡可能使紊流延後發生。
- 如果物體是鈍的,高雷諾數下的阻力主要是由壓力造成,設計時也須盡量 使邊界層延後分離。

有一種方法可以有效延遲邊界層分離,就是設法讓邊界層提早過渡到紊流 (圖 9.15),另一種更好的方法是將物體「流線化」,即盡量拉長物體的「後 部」。令人訝異的是,流體作用在如圖 9.17 所示之兩個二維物體的阻力竟然 相等。圖中之流線形支撐桿尾流寬度相當薄,並且與直徑很小的圓柱的尾流寬 度同級數。因此,考慮選項 (b) 所提供的額外結構支持取代選項 (a) 不會增 加阻力!

響。阻力係數是朝向流場的正面面 積,且所有的物體都是二維的。 如果物體的前緣(鼻部)是平的,那麼可將前緣部分改 為圓弧狀便能得到減少阻力的效果。圖 9.18 說明了將物體的 鼻部圓弧化以及將尾部削尖的優點。如果將圓鼻尖尾的造型 顛倒過來,使其尖部朝向前,則阻力反而會增加。這是由於 壓力下降時並不會發生分離,因此物體的前半部分可允許是 鈍的並具有大的(負)壓力梯度。而物體的後半部一定會伴 隨正向壓力梯度,將尾部削尖就是減緩壓力增加的梯度,從 而避免過早產生分離。但是要注意,不要無限制的增長尾 部,否則表面積增加過多反而大幅提高摩擦阻力,結果便適 得其反。

雷諾數相依性另一個與阻力係數關係密切的參數為雷諾數。在極低的雷諾 數下,流場主要由黏性力與壓力間的平衡來主導,此時慣性效應可被忽略。此 種情形下,三維物體的阻力為上游流速度 U、物體尺寸 l 與黏度 µ 的函數, 因此,對一顆在湖中沉澱之沙粒而言 (如右側邊欄圖所示),

 $\mathfrak{D} = f(U, \ell, \mu)$

由因次分析 (見 7.7.1節) 可得

$$\mathfrak{D} = C\mu\ell U \tag{9.23}$$

式中常數 C 與物體形狀有關。將式 (9.23) 轉化成無因次形式,可得

$$C_D = \frac{\ddot{\mathbb{R}} \underline{\mathbb{R}}}{\mathbf{R} \mathbf{e}}$$

式中 $\operatorname{Re} = \rho U \ell / \mu$ 。對於圓球來說, $C_D = 24 / \operatorname{Re}$, 令式中 $\ell = D$, D 為球體直 徑。對大多數物體來說, 上述公式在雷諾數小於 1 以下皆可適用。

创 題 9.8 低雷諾數的流動阻力

 已知:當工人將油漆噴塗到房間的天花板上時,許多小型油漆氣溶膠被分散到空氣中,最終這些顆粒將沉降並掉落到地板或其他表面。考慮直徑 D=1×10⁻⁵m(或10μm)和比重 SG=1.2 的小球形塗料顆粒。

求:計算這個粒子從天花板掉到距離 2.44 m 地面的時間,假設房間內的空氣靜止不動。

解:

如圖 E9.8(a) 所示為粒子的自由體圖。此粒子 以等速度 U 向下移動,該速度由粒子重量 W、周 圍空氣的浮力 F_B ,以及空氣作用在粒子阻力 \Im 三者間的平衡所統御。

由自由體圖的力平衡可得

 $\mathcal{W} = \mathcal{D} + F_B$

其中,假設 ⊬ 是顆粒體積

$$W = \gamma_{\text{point}} \mathcal{F} = SG\gamma_{\text{H}_2\text{O}} \frac{\pi}{6} D^3$$
 (1)

而且

$$F_B = \gamma_{\rm air} \mathcal{F} = \gamma_{\rm air} \frac{\pi}{6} D^3$$
 (2)

假設(由於物體相當小)本題屬潛變流 (Re<1)流動,而且 C_D=24/Re,故

$$\mathfrak{D} = \frac{1}{2}\rho_{\rm air}U^2\frac{\pi}{4}D^2C_D$$
$$= \frac{1}{2}\rho_{\rm air}U^2\frac{\pi}{4}D^2\left(\frac{24}{\rho_{\rm air}UD/\mu_{\rm air}}\right)$$

$$\mathfrak{D} = 3\pi\mu_{\rm air}UD \tag{3}$$

我們將在最後驗證是否 Re <1,以確定假設是否有效。式(3)稱為史托克斯定律(以紀念英國的數 學家暨物理學家),適用於潛變流中的圓球運動。 將式(1)、(2)及(3)合併後得

$$SG\gamma_{\rm H_2O}\frac{\pi}{6}D^3 = 3\pi\mu_{\rm air}UD + \gamma_{\rm air}\frac{\pi}{6}D^3$$

並解出 U

戜

$$U = \frac{D^2 (SG\gamma_{\rm H_2O} - \gamma_{\rm air})}{18\mu_{\rm air}}$$
(4)

由表 1.5 及 1.7 得 $\gamma_{H_2O} = 9800 \text{ N/m}^3 \cdot \gamma_{air} = 12.0 \text{ N/m}^3$,以及 $\mu_{air} = 1.79 \times 10^{-5} \text{ N} \cdot \text{s/m}^2$ 。並由式 (4)可計算出

$$U = \frac{(10^{-5} \text{ m})^2 [(1.2)(9800 \text{ N/m}^3) - (12.0 \text{ N/m}^3)]}{18(1.79 \times 10^{-5} \text{ N} \cdot \text{s/m}^2)}$$

或

$$U = 0.00365 \text{ m/s}$$

設 t_{fall} 表示粒子落下 2.44 m 所需的時間,因此,

$$t_{\rm fall} = \frac{2.44 \,\mathrm{m}}{0.00365 \,\mathrm{m/s}} = 668 \,\mathrm{s}$$

因此,油漆粒子落至地板至少需11分鐘。 因為

$$Re = \frac{\rho DU}{\mu} = \frac{(1.23 \text{ kg/m}^3)(1 \times 10^{-5} \text{ m})(0.00365 \text{ m/s})}{1.79 \times 10^{-5} \text{ N} \cdot \text{s/m}^2}$$
$$= 0.00251$$

結果得知 Re <1 ,故採用的阻力係數形式是有效的。

註解:圖 E9.8(b) 所示為針對不同直徑 *D* 的粒子 計算所得之結果。值得注意的是越小的粒子,下 降的速度越慢。事實上,能被深深吸入肺中的小 顆粒子尺寸皆小於 5 μm,並且會在該工作日停留 於空氣中,進而使得工人暴露於危害之中。這些 小顆粒子對人體 — 尤其是對那些竟日終年暴露

9-6 🚫 Chapter 9 經過沉體的流動

其中的人員健康,造成極大的傷害。在充滿粉塵 粒子的工作環境中,我們必須採取適當的工程管 制以降低吸入接觸(例如,適當通風),或是在 最不得已的情況下,使用個人防護裝備(PPE,例 如,人工呼吸器)。個人防護裝備是一種最不具有 保護效應的裝備,因此僅是防護措施的最後一 招。由長期觀點而言,更有效且花費較少的方 法,就是以工程巧思設計來排除並控制問題,亦 即防禦性設計。

流經圓柱將會呈現 多樣的不同結構。 具有中等電諾數的流場將呈現典型的邊界層結構。如果物體為流線形,阻 力係數隨電諾數的增加而遞減。在平板的層流邊界層中, *C_D*~Re^{-1/2}(見表 9.1)就是一例。鈍形物體在中等電諾數下,其阻力係數通常接近一個恆定的 常數,如圖 9.19(a)所示為平滑的球體及圓柱體之阻力係數隨電諾數之變化關 係。該圖指示,在 10³ < Re < 10⁵ 間, *C_D* 值的確不變。

圖 9.19(b) 所示為在圖 9.19(a) 中選出一些不同雷諾數之流動所對應的流場結構。很明顯地,對於一給定的物體,流場型態會隨雷諾數的不同而產生很大的差異性。

當邊界層正要轉變成紊流時(即過渡流),阻力係數都會發生劇烈的變化,(許多不同形狀的物體都會有此類似現象)。就如圖 9.13 所示之平板流,以及圖 9.19 所示之圓柱與圓球。這些案例指示,其相應的臨界雷諾數都是物體形狀的函數。

當邊界層轉變成紊流後,對於流線形物體來說,其阻力係數將會增加,這 是因為阻力是由剪力所造成,而紊流之剪力大於層流中的剪力。但是對諸如圓 柱或圓球之鈍形物體而言,當邊界層開始轉變為紊流時,阻力係數反而減小。 就如 9.2.6 節中所討論的,紊流邊界層可延伸至圓柱後端之逆壓梯度區,並使 分離延後發生,其衍生的結果是使尾流的範圍變得更窄且壓力阻力變得更小。 如圖 9.19 所示,在 10⁵ < Re < 10⁶ 範圍中,*C*₀ 值形成驟降的狀況。

對極度鈍形體而言,例如垂直於流動的平板,不論層流的邊界層特性為 何,在平板兩端的邊緣必定會產生分離,因此其阻力係數與雷諾數幾乎無關, 其值固定在 1.9 左右。

圖 9.20 針對一系列具有不同鈍形程度之二維物體,顯示其阻力係數隨雷 諾數變化的情形。前述之流動特性亦顯示於其中。

9.3 阻力 🚫 9-7

圖 9.19 (a) 圓柱與圓球的阻力係數隨雷諾數的變化曲線; (b) 在 (a) 部分所描述以 各種雷諾數流經圓柱的典型流動形式。

9-8 🔇 Chapter 9 經過沉體的流動

圖 9.20 在二維流場中各種形狀的物體之阻力係數隨著雷諾數的變化情形

下沉物體的終極速度

圖 E9.9(a)

**** 倒題 9.9

求: 欲形成直徑 D=4cm (大小如高爾夫球般) 的冰雹,估計上升氣流的速度 U。

解:

就如例題 9.8 的討論,位於穩定狀態時,在流 體中以終端速度 U 下降的物體其平衡力可以表示 為

 $\mathcal{W} = \mathcal{D} + F_{R}$

式中,
$$F_B = \gamma_{air} + 表示空氣作用在質點的浮力,$$

 $W = \gamma_{ice} + 為質點的重量; 3 為空氣動力阻力。$ 由此上式可重寫為

$$\frac{1}{2}\rho_{\rm air}U^2\frac{\pi}{4}D^2C_D = \mathcal{W} - F_B \tag{1}$$

由於 $\mathcal{H} = \pi D^3 / 6$ 且 $\gamma_{ice} \gg \gamma_{air}$ (亦即 $\mathcal{W} \gg F_B$), 所以式 (1) 可化簡成

$$U = \left(\frac{4}{3} \frac{\rho_{\text{ice}}}{\rho_{\text{air}}} \frac{gD}{C_D}\right)^{1/2}$$
(2)

同時 $\rho_{ice} = 948 \text{ kg/m}^3$ 、 $\rho_{air} = 1.23 \text{ kg/m}^3$,以及 D = 4 cm = 0.04 m,代入式 (2)得

$$U = \left[\frac{4(948 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(0.04 \text{ m})}{3(1.23 \text{ kg/m}^3)C_D}\right]^{1/2}$$
$$U = \frac{20.08}{2}$$
(3)

或

$$\frac{20.08}{\sqrt{C_D}} \tag{3}$$

式中, U 的單位是 m/s。欲求出 U 必須先求得 C_D 值,然而 C_D 值為雷諾數的函數 (見圖 9.19), 而雷諾數又由 U 值求得。因此,我們必須使用如 8.5 節類似以慕迪圖處理管流問題之迭代方式處理 之。

9.3 阻力 🚫 9-9

由圖 9.19 假設 $C_D = 0.5$,再由式 (3) 可得

$$U = \frac{20.08}{\sqrt{0.5}} = 28.4 \text{ m/s}$$

對應的雷諾數 (假設 ν=1.46×10⁻⁵ m²/s) 為

$$\operatorname{Re} = \frac{UD}{\nu} = \frac{(28.4 \text{ m/s})(0.04 \text{ m})}{1.46 \times 10^{-5} \text{ m}^2/\text{s}} = 7.78 \times 10^4$$

由上式算出的 Re 值,可利用圖 9.19 查出 $C_D = 0.5$, 此值和原先假設的完全符合。故 U 值則為

$$U = 28.4 \text{ m/s} = 102.2 \text{ km/hr}$$
 (Ans)

註解:圖 E9.9(b) 為針對不同海拔高度 z 計算之結 果(並使用附錄 B 之資料)。由於海拔越高密度 越低,冰雹在暴風雨上層下降的速度將大於其墜 落至地面時的速度。

很明顯地,穿越過如此上升氣流的飛機(即 使它能閃躲冰雹)也將感受到上升氣流的效應。 由式(2)可以看出,冰雹越大,必要的上升氣流 也越強。直徑大於15 cm的冰雹也曾被報導過。事 實上,冰雹很少是圓形的,也不是光滑表面的。 圖 E9.9(c)所示之冰雹比高爾夫球大,具有明顯地 橢圓球形狀,而且有額外較小尺度的表面粗糙 度。不過,本例所計算之上升氣流速度與實際量 測質相當符合。

圖 E9.9(c)

壓縮性效應 倘若物體的速度相當大,則壓縮效應將變得極為重要,而且阻 力係數會變為馬赫數 Ma = U/c 的函數,其中 c 代表流體中的音速。對於低馬 赫數的流動來說,亦即 Ma < 0.3,壓縮效應並不顯著,阻力係數與馬赫數無 關。另一方面,對高馬赫數流動而言,阻力係數將強烈受馬赫數影響。

對於大多數的物體來說, C_D 值在 Ma 接近 1 時 (穿音速流) 將有急劇 的上升。這種特性的改變如**圖 9.21** 所示,主要與**震波 (shock wave**;即流場 中流體參數發生近乎不連續變化之極狹小之區域) 有關,如左側邊欄圖所 示。震波是一個橫跨流場的狹窄區間,在此區間中流體的各項參數幾乎都呈不 連續之變化。震波在低速的次音速流中並不會發生,它一旦出現就會提供一種 額外機制以產生很大的阻力。 當馬赫數在 0.5 以 下時,阻力係數通 常與馬赫數無關。

9-10 🚫 Chapter 9 經過沉體的流動

表面粗糙度通常,流線形體的阻力會因為表面粗糙度的增加而增大,這也 就是為何設計飛機機翼時會盡可能使其表面光滑,因為突出的鉚釘或是螺絲頭 會使得阻力大增。另一方面,對於極度之鈍形體(如垂直於流動的平板)而 言,表面粗糙度就對阻力值無影響,此乃因為剪應力並不是作用在入流方向, 所以不會形成阻力。

表面粗糙度可使邊 界層轉變成紊流型 態。 鈍形體如圓柱或圓球者,表面粗糙度的增加實際上會降低阻力,如**圖 9.22** 對圓球的說明。如同 9.2.6 節的討論,當雷諾數達到臨界值時(如光滑圓球之 Re=3×10⁵)邊界層會轉變成紊流,而且圓球後端的尾流區將變得比層流者更 狹窄[見圖 9.19(b)],結果明顯地降低了壓力阻力,而摩擦力阻力僅略為增 加,因而阻力總和(和 C_D)變得較小。

在低雷諾數的流動中,若增加球體的表面粗糙度,可能使邊界層形成紊流。例如,高爾夫球的臨界雷諾數約為 Re=4×10⁴,而在 4×10⁴ < Re<4×10⁵ 範圍中,標準含凹孔粗糙面(淺凹)的高爾夫球其阻力遠比具光滑面之高爾 夫球來得小(*D*_{D粗糙}/*C*_{D光滑}≈0.25/0.5=0.5)。由例題 9.10 顯示,一般被正常揮 擊之高爾夫球便顯現前述雷諾數之範圍。一般被正常揮擊之桌球,其雷諾數範 圍低於 Re=4×10⁴,因此桌球的表面通常是光滑的。

9.3 阻力 🚫 9-11

表面粗糙度增加可 能會使他加力增加 減少,一切 端視物 體形狀 而定。

圖 9.22 圓球阻力係數隨表面粗糙度的變化曲線。在圖示之雷諾數範圍內, 層流邊界 層轉變成紊流。

创 題 9.10 表面粗糙度的影響

已知:一個被正常揮擊之高爾夫球 (直徑 D=4.3 cm、重量 W=0.44 N) 以 U=60 m/s 的速度飛離 T 形球座;當桌球 (直徑 D=3.8 cm、重量 W=0.025 N) 被拍擊後,以 U=20 m/s 速度飛離球 拍。

求:在已知條件下,試求標準高爾夫球、光滑高 爾夫球以及桌球的阻力,同時估算每一顆球的減 速度值。

解:

任一顆球的阻力可由下式獲得

$$\mathfrak{D} = \frac{1}{2}\rho U^2 \frac{\pi}{4} D^2 C_D \tag{1}$$

式中阻力係數 C_D 為雷諾數與表面粗糙度的函數, 如圖 9.22 所示。在標準空氣中的高爾夫球

$$\operatorname{Re} = \frac{UD}{\nu} = \frac{(60 \text{ m/s})(4.3/100 \text{ m})}{0.14 \times 10^{-4} \text{ m}^2/\text{s}} = 1.8 \times 10^5$$

而桌球的雷諾數則可表示為

 $\operatorname{Re} = \frac{UD}{\nu} = \frac{(20 \text{ m/s})(3.8/100 \text{ m})}{(1.46 \times 10^{-5} \text{ m}^2/\text{s})} = 5.2 \times 10^4$

其阻力係數可分別為:標準高爾夫球的 $C_D = 0.25$ 、 光滑高爾夫球的 $C_D = 0.51$ 、桌球的 $C_D = 0.50$ 。代 入式 (1) 得標準高爾夫球的阻力

$$\mathfrak{D} = \frac{1}{2} (1.23 \text{ kg/m}^3) (60 \text{ m/s})^2 \frac{\pi}{4} (4.3 \times 10^{-2} \text{ m})^2 (0.25)$$

= 0.8 N (Ans)

光滑高爾夫球的阻力

$$\mathcal{D} = \frac{1}{2} (1.23 \text{ kg/m}^3) (60 \text{ m/s})^2 \frac{\pi}{4} (4.3 \times 10^{-2} \text{ m})^2 (0.51)$$

= 1.64 N (Ans)

桌球的阻力

$$\mathfrak{D} = \frac{1}{2} (1.23 \text{ kg/m}^3) (20 \text{ m/s})^2 \frac{\pi}{4} (3.8 \times 10^{-2} \text{ m})^2 (0.50)$$

= 0.14 N (Ans)

對應的減速度為 $a = \mathfrak{D}/m = g\mathfrak{D}/\mathcal{W}$,其中 m 為 球的質量,因此減速度相對於重力加速度為 a/g =

9-12 🚫 Chapter 9 經過沉體的流動

$$\mathfrak{D}/W$$
,或
 $\frac{a}{g} = \frac{0.8 \text{ N}}{0.44 \text{ N}} = 1.82 (標準高爾夫球)$ (Ans)
 $\frac{a}{g} = \frac{1.64 \text{ N}}{0.44 \text{ N}} = 3.73 (光滑高爾夫球)$ (Ans)
 $\frac{a}{g} = \frac{0.14 \text{ N}}{0.025 \text{ N}} = 5.6 (桌球)$ (Ans)

註解:在考慮阻力時,不要僅僅被 C_D 的大小所迷 惑。請注意,桌球的阻力遠低於標準高爾夫球,儘 管阻力係數更大。這是因為直徑的差異,尤其是速 度差平方所導致的結果。值得強調的是,粗糙表面 之高爾夫球比光滑表面之高爾夫球,具有明顯較小 的減速度。同時,桌球具有較大的阻力-質量比, 因此桌球在拍擊後迅速落下,故而飛行距離不及 高爾夫球。當標準高爾夫球之U=20 m/s時,其 阻力為 $\mathfrak{D}=0.09 \text{ N}$ 、減速比值a/g=0.202 遠小於 桌球之a/g=4.77。相反的,以U=60 m/s被擊 離 T 形球座之桌球,其減速度為 $a=530 \text{ m/s}^2$ 或 a/g=54.1,因而不會飛得和高爾夫球一樣遠。

圖 E9.10為分別針對標準高爾夫球及光滑高爾 夫球計算所得之阻力對速度的函數圖形。

粗糙表面高爾夫球的阻力小於光滑表面高爾 夫球者的雷諾數範圍介於 4×10⁴ 到 3.6×10⁵,其 對應的飛行速度約會在 14<U<122 m/s,這速度 也是大部分高爾夫球員的擊球速度區間(由頂尖 的職業高爾夫球員所擊出最快的開球速度約為 85 m/s)。在 9.4.2 節中亦將提及,高爾夫球表面之小 凹窩有助於產生升力,較光滑表面之高爾夫球能 飛得更遠。

流體新知

具有凹窩的球棒

高爾夫球上的凹窩可產生紊流邊界層進而降 低空氣動力阻力,並使高爾夫球比一般光滑表面 的球飛行更遠,這已是多年來眾所周知的事實。 因此,何以不將球棒上加上凹窩,使得未來之打 擊強棒能夠揮棒更快、將球打得更遠?麻省理工 學院的圖里歐 (Jeffery De Tullio) 教師就曾經思考 過這個問題,並以具有凹窩的球棒進行實驗求出 答案,最後取得具凹窩球棒的發明專利。這種發 明的結果可使揮棒者以 3 到 5% 高於揮動光滑球 棒的速度揮動具凹窩的球棒。理論上,此多出的 揮棒速度在長打效應上可使球多飛 3 到 4.5 m 的 距離。

福勞得數效應另一個與阻力係數可能密切相關的參數為福勞得數, $Fr = U/\sqrt{g\ell}$ 。第 10 章將談到福勞得數為自由流流速與兩流體介面間(例如海洋之表面)波速之比值。諸如船隻之物體在該表面移動時,由於能量存在而產生波動,這種能量來自船體,而且很明顯的就是阻力,因為能量的時間變率

(功)等於速度與力的乘積。該波動的本質通常與流動之福勞得數及物體形狀有關 ── 滑水者在水中以低速 (低 Fr)「破浪」前進所產生的波動,與滑水者以高速 (高 Fr)「滑浪」前進所產生的波動並不相同。

複合體阻力 組合物體的阻力概算,可將物體視為幾個簡單形狀的組合,而 各部分的阻力和即為總阻力。例如左側邊欄圖所示,風對旗杆施加的總力可近 似於由不同構成要素所產生的氣動力總和 — 對旗產生的力以及對杆產生的 力。在某些情況下,由於各要素間的互動效應,使用近似方法時就必須特別小 心。雖然近似方法通常具有合理性,但僅僅將構成要素所產生的力之總和視為 作用在整個物體的總力是不正確的。

複雜物體的阻力計 算,可由各部分的 阻力相加近似而得。

已知:風以速率 96 km/hr 吹過圖 E9.11(a) 所示的 水塔。

求: 今欲防止水塔受風傾倒,估計在水塔底部須施加多少力矩(扭矩)*M*。

解:

將水塔視為一個靜置在圓柱上的圓球,假設總阻力是這兩部分阻力之合力。圖 E9.11(b) 所示為其自由體圖。對水塔基底求力矩總和得

 $M = \mathfrak{D}_{s}\left(b + \frac{D_{s}}{2}\right) + \mathfrak{D}_{c}\left(\frac{b}{2}\right)$ (1)

其中

$$\mathfrak{D}_s = \frac{1}{2}\rho U^2 \frac{\pi}{4} D_s^2 C_{Ds}$$
⁽²⁾

以及

$$\mathfrak{D}_{c} = \frac{1}{2} \rho U^{2} b D_{c} C_{Dc}$$
(3)

式 (2) 與 (3) 兩式各為施於圓球與圓柱的阻力。 在標準大氣狀況下, 雷諾數依次為

$$\operatorname{Re}_{s} = \frac{UD_{s}}{\nu} = \frac{(27 \text{ m/s})(12 \text{ m})}{0.14 \times 10^{-4} \text{ m}^{2}/\text{s}} = 2.31 \times 10^{7}$$

和

$$\operatorname{Re}_{c} = \frac{UD_{c}}{\nu} = \frac{(27 \text{ m/s})(4.5 \text{ m})}{0.14 \times 10^{-4} \text{ m}^{2}/\text{s}} = 8.67 \times 10^{6}$$

阻力係數 C_{Ds} 與 C_{Dc} 可分別由圖 9.19 取得近似值 $C_{Ds} \approx 0.3$ 而且 $C_{Dc} \approx 0.7$

值得注意的是,由於雷諾數已不在圖示的範圍 內,所以必須藉由外插法來獲得 C_{Ds} (一種具潛 在危險性之作法!)。由式 (2) 與 (3) 分別求得

$$\mathfrak{D}_{s} = 0.5(1.23 \text{ kg/m}^{3})(27 \text{ m/s})^{2} \frac{\pi}{4}(12 \text{ m})^{2}(0.3)$$
$$= 15.2 \times 10^{3} \text{ N}$$

和

$$\mathfrak{D}_c = 0.5(1.23 \text{ kg/m}^3)(27 \text{ m/s})^2(15 \text{ m} \times 4.5 \text{ m})(0.7)$$

= 212×10³ N

由式 (1) 可知,為免水塔傾倒的力矩應為

$$M = (15.2 \times 10^{3} \text{ N}) \left(15 \text{ m} + \frac{12}{2} \text{ m} \right) + (21.2 \times 10^{3} \text{ N}) \left(\frac{15}{2} \text{ m} \right)$$
$$= 4.78 \times 10^{5} \text{ N} \cdot \text{m}$$
(Ans)

9-14 🚫 Chapter 9 經過沉體的流動

註解:以上的結果僅為預估值,因為(a)在塔頂 至地面之範圍內,風可能不是均匀流動;(b)水塔 不全然是光滑球體與圓柱之組合體;(c)圓柱並非 無限長;(d)吹過圓柱之流動與吹過圓球之流動必

然相互作用,所以淨阻力不完全是兩者總和;(e) 阻力係數值乃由外插方式取得。雖然如此,但這 個近似結果仍具準確性。

有關大部分物體的阻力係數相關訊息在許多文獻中都有記述。在圖 9.23、 9.24 與 9.25 中,我們將各種二維、三維、天然或是人工的物體之阻力係數加

形狀	參考面積 <i>A</i> (<i>b</i> = 長)	阻力係數 $C_{\rho} = \frac{9}{\frac{1}{2}\rho U^{2}A}$	雷諾數 Re = <i>ρ UD/μ</i>
+ <i>D</i> + 具有圓角 的方形棒	A = bD	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Re = 10 ⁵
← R → 具有圓角 D 的等邊三 → 角形	A = bD	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Re = 10 ⁵
(弧) 半圓殻(弧)	A = bD	→ 2.3 ← 1.1	$Re = 2 \times 10^4$
	A = bD	→ 2.15 → 1.15	$Re > 10^4$
	A = bD	→ 1.80 ← 1.65	Re > 10 ⁴
	A = bD	2.05	$Re > 10^4$
▶ 角鐵	A = bD	→ 1.98 → 1.82	$Re > 10^4$
	A = bD	1.0	$Re > 10^4$
→ e ↔ → D / D / 短形	A = bD	$\begin{tabular}{ c c c c } \hline ℓ/D & C_D \\ \hline \le 0.1 & 1.9 \\ 0.5 & 2.5 \\ 0.65 & 2.9 \\ 1.0 & 2.2 \\ 2.0 & 1.6 \\ 3.0 & 1.3 \end{tabular}$	Re = 10 ⁵

圖 9.23 一般二維截面物體之常見阻力係數

9.3 阻力 🚫 9-15

形狀	參考面積 <i>A</i>	阻力係數 C_D	雷諾數 Re = <i>ρUD/μ</i>
□ → 半球體	$A = \frac{\pi}{4} D^2$	→ 1.17 → 0.42	Re > 10 ⁴
2000 空心半球	$A = \frac{\pi}{4} D^2$	→ 1.42 0.38	Re > 10 ⁴
→ D D ↓ III 薄圓盤	$A = \frac{\pi}{4} D^2$	1.1	Re > 10 ³
→	$A = \frac{\pi}{4} D^2$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Re > 10 ⁵
	$A = \frac{\pi}{4} D^2$	θ,度 C _D 10 0.30 30 0.55 60 0.80 90 1.15	Re > 10 ⁴
→ D 立方體	$A = D^2$	1.05	Re > 10 ⁴
→	$A = D^2$	0.80	Re > 10 ⁴
→ ① D 流線形體	$A = \frac{\pi}{4}D^2$	0.04	Re > 10 ⁵

圖 9.24 一般三維截面物體之常見阻力係數

9-16 🔇 Chapter 9 經過沉體的流動

形狀	參考面積	阻力係數 C _o	
D 降落傘	正面面積 $A = \frac{\pi}{4}D^2$	1.4	
D 多孔抛物 線狀碟形 天線	正面面積 A = <u><i>π</i></u> D ²	多孔性 0 0.2 0.5 → 1.42 1.20 0.82 ← 0.95 0.90 0.80 多孔性 = 開口面積 / 總面積	
一般人體	站立 坐姿 蹲姿	$C_D A = 0.84 \text{ m}^2$ $C_D A = 0.56 \text{ m}^2$ $C_D A = 0.23 \text{ m}^2$	
	$A = \ell D$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
帝國大廈	正面面積	1.4	
<u>————————————————————————————————————</u>	正面面積	1.8	
自行車騎士			
ふ の 坐姿端正	$A = 0.5 \text{ m}^2$	1.1	
読 競賽	$A = 3.36 \text{ m}^2$	0.88	
● 車隊	$A = 3.36 \text{ m}^2$	0.50	
流線形	$A = 0.46 \text{ m}^2$	0.12	
貨櫃車 「」」 「」」 「」」 「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」「」」 「」 「	正面面積	0.96	
	正面面積	0.76	
	正面面積	0.70	
U U U U = 10 m/s U = 20 m/s U = 30 m/s	正面面積	0.43 0.26 0.20	
海豚	濕面積	0.0036 在 Re = 6 × 10 ⁶ (平板: <i>C_{Df}</i> = 0.0031)	
大鳥	正面面積	0.40	

圖 9.25 常見物體之一般阻力係數

9.4 升力 🚫 9-17

以整理。同時,阻力係數等於 1 相當於作用在面積 A 的動態壓力 (或稱動壓) 形成的阻力,亦即 $\mathfrak{D} = \frac{1}{2}\rho U^2 A C_D = \frac{1}{2}\rho U^2 A$,其中 $C_D = 1$ 。而且一般非流線形物體之阻力係數值亦在此一級數。

9.4 升力

如在 9.1 節曾指出,在流體中移動的任何物體都會遭受一個平行於入流速 度的作用力,即阻力 30。另外還可能會出現一個垂直於入流的作用力 — 升 力 *S*。但此力只有當物體的幾何不對稱,或者當它產生了一個不對稱的流場 時(例如一個旋轉的球體)才會出現。人們付出了相當多的努力來了解升力 產生過程的各種特性。一些物體,如飛機翼上的翼型、螺旋槳或渦輪機和壓縮 機葉片,都被設計成能夠產生升力。然而,有些物體的設計則被要求抑制升力 的產生。例如汽車的案例,升力的存在往往會減少輪胎和地面之間的接觸力, 從而降低了抓地力和轉彎能力。因此,可乘載人的汽車的設計通常盡量將升力 減小以提升安全性;對於賽車來說,則希望能夠進一步產生向下的升力(稱 為下壓力)以提供機動性。

9.4.1 表面壓力分布

若已知物體周圍的壓力分布與壁面剪應力,則可由式 (9.2) 計算升力值, 然而在 9.1 節曾指出,壓力分布與壁面剪應力的數據一般為未知。一般升力均 以升力係數表示,即

$C_L = \frac{\mathcal{L}}{\frac{1}{2}\rho U^2 A}$	(9.24)
---	--------

升力係數為升力的
 無因次形式。

升力係數須經由實驗方法或數值計算獲得。

物體形狀是影響升力係數的最重要參數。工程界已投入相當多的努力於設計產生升力裝置之最佳形狀。在此,將著重形狀對升力造成的影響。

大多數產生升力的裝置(如機翼、風扇、汽車擾流板等)都在高雷諾數 大部分升力源自於 範圍之內操作,因而流動具有邊界層特性,且黏性效應將侷限於邊界層及尾流 ^{壓力而非黏性力。} 區中。這種情況下,壁面剪應力 τ_w 對升力的貢獻微乎其微,而大部分的升力 來自於表面的壓力分布。

典型的升力產生裝置是藉由其上、下表面產生不同的壓力分布而產生升力。對於高雷諾數的流動而言,壓力分布一般與動壓 $\rho U^2/2$ 成正比,而黏性

9-18 🚫 Chapter 9 經過沉體的流動

圖 9.26 對稱與不對稱機翼

效應則為次要因素。因此,就如右側邊欄圖所示,對已知之翼型而言,其升力 正比於流速的平方。圖 9.26 所示為兩種產生升力的機翼,很明顯地,對於對 稱機翼而言,若其攻角 (angle of attack) α 為零時,升力是無法產生的。相反 的,不對稱機翼本身具有幾何的非對稱性,致使機翼上下表面的壓力分布不同 (流場不對稱),因此就算 α=0 也可產生升力。

因為大部分的機翼都很薄,一般慣用俯瞰面積 A = bc 來定義升力係數, 其中 b 指機翼的長度(簡稱翼展),如圖 9.26 所示,而 c 代表機翼前端至後 端的長度,簡稱弦長 (chord length)。如此定義之典型升力係數通常與 1 同階, 也就是說,升力與動壓和機翼的俯瞰面積之乘積同階,即 $\mathcal{L} \approx (\rho U^2/2)A$ 。所 謂的翼 面 負 载 (wing loading) — 定義為單位機翼面積的平均升力 (\mathcal{L}/A) — 將隨速度增加而增大。例如,1903 年萊特飛行家一號 (Wright Flyer) 的 飛機翼面負載是 72 N/m²,而當今之波音 747 飛機則為 7200 N/m²。

對許多升力產生裝置來說,升力與阻力的比值是很重要的物理量,亦即 $\mathcal{L}/\mathcal{Q} = C_L/C_D$ 。此比值通常也以 C_L/C_D 對 α 的關係圖表示,如圖 9.27(a) 所 示,或以 α 為參數之升力 - 阻力極線圖 (lift-drag polar diagram),如圖 9.27(b) 所示。最具效率的攻角 (最大的 C_L/C_D 比值),乃是由原點繪一條線與 $C_L - C_D$ 曲線相切而得,如圖 9.27(b) 所示。

雖然黏性效應和壁面剪應力對於升力的直接生成幾乎無關,但對升力裝置 的設計與應用卻還是相當重要。這是由於因黏性引起之邊界層分離可能發生在 非流線形物體,例如具有大攻角的機翼。在某一定點以下,升力係數將隨攻角 α增加而穩定地增大。但是當 α 過大時,在上表面的邊界層產生分離,而流 過機翼之流體將形成寬而紊流之尾流區,這時升力驟降而阻力增加,此現象如 右側邊欄圖所示,稱為失速 (stall)。這種情形若發生在低空飛行的飛機是非常 危險的,因為將沒有充分的時間及高度讓飛機回復至原來飛行狀況。

攻角太大則邊界層 會產生分離而造成 機翼失速。

9.4 升力 🚫 9-19

流體新知

蝙蝠感覺到紊流

研究人員發現,在蝙蝠翅膀上的某些點具有 特殊的觸覺感測細胞,在細胞的中央有微小的毛 髮向外伸出。這些細胞對流過翅膀表面的氣流相 當敏感,並且很顯然地能感測到翅膀表面的紊 流。當這些微小毛髮被去除時,蝙蝠尚能良好的 直線飛行,但當嘗試繞過阻礙物時,對高度的控 制便變得不穩定了;而當毛髮再長出來時,蝙蝠 又完全恢復了飛行的技巧。研究人員認為這些觸 覺細胞是用來感測翅膀表面的紊流,進而告知蝙 蝠調整攻角的時機以及翅膀的曲度,以防止在空 中失速。

圖 9.27 典型機翼具有相同升力與阻力數據的兩種表示法:(a) 升力-阻力比為攻角的 函數,並以失速點表示在上表面發生邊界層分離;(b) 以攻角表示的升力-阻力極線圖。

前面曾談到,我們可藉由攻角的調整來改變機翼的升力與阻力,攻角的改 變其實隱含著物體形狀的改變。在很多實際應用上,我們確實是透過外形的變 化來改變升力與阻力。例如,現代化的飛機,通常是以如同**圖**9.28 的前緣或 後緣襟翼來達到變更升力和阻力。在飛機著陸及起飛的過程中,由於速度相當 低,欲產生升力則必須借助機翼形狀的變更,即伸展機翼前方或後段之襟翼 (造成機翼看起來很「醜」)。使用襟翼,縱然會增加機翼的阻力,但卻可有 效地增加升力。因此,在飛機著陸或起飛的過程中,阻力並不是重要的因素, 反而是著陸或起飛時速度的減小遠較阻力的短暫增加更形重要。在正常飛行狀

9-20 🚫 Chapter 9 經過沉體的流動

況下,襟翼通常是縮回狀態 (機翼看起來很「整齊」),阻力變得相當小。此時,甚至機翼的升力係數變小,飛機仍可獲得足夠大的升力 (因為正常飛行時的速度夠快)。

圖 9.28 各式襟翼設計的典型升力與阻力係數關係圖

流體新知

從大自然中學習

數百年來,人類的眼光始終著眼於大自然, 特別是鳥類的飛行行為,然而,所有完全模仿鳥 類的早期飛機最後都證明是失敗的作品,經過無 數的試驗之後才發現只有硬式的機翼才能讓人類 的飛行夢想成真。然而最近工程師又將其目光轉 回像鳥類、昆蟲及其他生物模型等生命系統,試 圖在飛機設計上有突破性的進展,他們相信,以 大自然為本的設計觀念應用在飛機上,有朝一日 會成為可能。譬如,藉由動畫定型及 3D 旋轉特效 將鳥類最具機動性的翅膀功能數據化,不再是技 術瓶頸,利用鳥類移動翼端及前緣羽毛便能控制 翅膀周圍氣流的特性,也能用來設計較目前襟 翼、硬式尾翼表面更有效率的飛機。對於小型生 物而言,藉由了解昆蟲操控不穩定流動以產生升 力的機制,也提供工程師朝微尺寸空氣載具發展 的新方向。總體而言,在擁有高科技、材料、高 度電腦化以及自動操控的多方有利因素下,未來 模仿大自然孕育而成的航空器或許將能成為可 能。

有關機翼的升力與阻力的詳細資料,可查閱相關的空氣動力學書籍。

创 題 9.12 人工動力飛行的升力與功率

已知:在 1977 年首架的人工動力飛機 ── 翱翔 禿鷹號 (Gossamer Condor),如圖 **E9.12(a)**所示, 完成兩折返點相距 0.8 km 的 8 字形預定路徑飛 行,因而榮獲克雷默獎 (Kremer prize)。該架飛機 的有關數據為:

飛行速度 =U=4.6 m/s 機翼尺寸 =b=29 m,c=2.3 m(平均) 重量(含飛行員)=W=934 N

阻力係數 = C_D = 0.046

圖 E9.12(a)

求:(a) 求升力係數 C_L 及 (b) 飛行員所需供給的 功率 \mathfrak{P} 。

解:

(a) 為了要穩定地飛行,升力必須與重量達成平衡。亦即

$$\mathscr{W} = \mathscr{L} = \frac{1}{2}\rho U^2 A C_L$$

因此

$$C_L = \frac{2^{\circ}W}{\rho U^2 A}$$

其中 $A = bc = 29 \text{ m} \times 2.3 \text{ m} = 66.7 \text{ m}^2$, $\mathcal{W} = 934 \text{ N}$, 且 標準空氣的 $\rho = 1.23 \text{ kg/m}^3$, 代入上式可得

$$C_L = \frac{2(934 \text{ N})}{(1.23 \text{ kg/m}^3)(4.6 \text{ m/s})^2(66.7 \text{ m}^2)} = 1.08 \text{ (Ans)}$$
這是一個合理的數字。而飛機的總升力 - 阻力比為

 $C_L/C_D = 1.08/0.046 = 23.5$ °

(b) 飛行員所供應的功率與動力鏈效率的乘積,與 克服阻力 3 的需求功率相當,亦即

 $\eta \mathcal{P} = \mathfrak{D}U$

 $\mathfrak{D} = \frac{1}{2} \rho U^2 A C_D$

$$\mathcal{P} = \frac{\mathfrak{D}U}{\eta} = \frac{\frac{1}{2}\rho U^2 A C_D U}{\eta} = \frac{\rho A C_D U^3}{2\eta}$$
(1)

或

其中

因此

$$\mathcal{P} = \frac{(1.23 \text{ kg/m}^3)(66.7 \text{ m}^2)(0.046)(9.8 \text{ m/s})^3}{2(0.8)}$$

= 230 W (Ans)

註解:此功率水準是由一位狀況良好的駕駛員所 表現出來的(由題目指出該次飛行也是一次成功 的表演)。要注意的是,僅有 80% 的功率用來驅 使飛機在空氣中飛行(亦即,0.8×230=184W, 相當於阻力 @=39.9N),其他的 20% 則因動力 鏈之效率而損失。

圖 E9.12(b) 所示為針對不同飛行速度進行計 算所得之功率結果。又由式(1)得知,當阻力係 數為常數時,功率將與 U³成正比 ── 也就是說, 將飛行速率加倍(即9m/s)時,則所需為原來的 八倍(即1.8kW,遠遠超越人類能力之範圍)。

9-22 🚫 Chapter 9 經過沉體的流動

9.4.2 環流

無黏性流分析可用 以獲得流經機翼的 理想流。 環流 (circulation) 乃一學術名詞,當初被用來計算機翼所產生的升力。 考慮如圖 9.29 所示流經一有限長度機翼的流動。在升力產生時,機翼下表面 的平均壓力將大於上表面。接近機翼側面兩端的地方,由於壓差的緣故將導致 流體試圖流向上表面,就如同圖 9.29(b) 所示。掃掠過機翼的下游流體在機翼 的兩側同時產生所謂的後端渦流 (trailing vortex)(見圖 4.3)。

後端渦流由機翼的左右兩端,與沿著翼展的界限渦流 (bound vortex) 結 合而釋出,而界限渦流便形成產生升力的環流 (circulation)。由界限渦流與後 端渦流的合併而成的渦流系統稱之為馬蹄形渦流。後端渦流的強度等於界限渦 流的強度,也與所產生之升力成正比。大型飛機 (如波音 747) 能產生強大 的後端渦流,且該渦流能持續一段相當長的時間,直到因黏性效應才逐漸消 逝。如此強大的渦流,往往能使緊隨其後之小型飛機產生翻轉,甚至失去控 制。

圖 9.29 流體流經有限長度的機翼:(a)由界限渦流與後端渦流形成的 馬蹄形渦流系統;(b) 繞過翼端的空氣造成後端渦流。

(*b*)

9.4 升力 🚫 9-23

流體新知

機翼末端向上彎折的小翼可降低阻力進而提 升飛行性能。由於機翼底面的高壓與機翼上面低 壓的壓差,形成機翼末端的渦流。小翼可降低渦 流強度進而降低阻力。機翼末端的渦流就是能量 損失以及阻力增加的一種現象(賽車上的尾翼具 有「側翼」以控制這個效應。)。本質上,小翼的 功能在於不需延伸翼展便能增加機翼長寬比的效 益。小翼有許多不同的型態 — 空中巴士 A320 具有很小的上、下小翼,波音 747-400 的小翼為 傳統的向上折彎型,波音商務噴射機(波音 737 的改裝型)的小翼有 2.4 m 長,而且主翼與小翼 的連結過渡區為弧形。由於小翼周圍的氣流相當 複雜,因此每一架飛行器的小翼都必須謹慎設計 及測試,設計不良的小翼反而會增加阻力。在過 去,小翼是根據主翼加以改變式樣,而現今飛機 的小翼都是從頭設計的。不像汽車的尾翼,小翼 的確有其功能。

前面已經指出,升力主要是由於環繞著物體的漩渦或渦流所產生。經由設 計之非對稱性機翼可產生指定的漩渦量及升力。至於如圓柱或圓球等對稱性物 體,除非藉由本身的旋轉,通常是無法產生升力的。

無黏性流體流經一圓柱時,將形成如圖 9.30(a) 所示之對稱性流動。由於 流場對稱,升力與阻力值皆是零。然而,若令圓柱於靜止的真實流體 (µ≠0) 繞其中心軸旋轉,該旋轉將拖曳周圍的流體繞著圓柱產生,如圖 9.30(b) 所示 的環流。若該環流再與均匀之理想上游流合併,將產生如圖 9.30(c) 所示的流動 型態。如此的流動對於經過圓柱中心的水平面將不再為對稱流場;圓柱下半部 的平均壓力比上半部大,因而產生升力。這種現象稱為馬格納斯效應 (Magnus effect)。請注意,圖 9.30(c) 中的流線形是理想化的。實際上,會出現尾流, 導致升力減少。旋轉的球體也會產生類似的升力。此現象皆足以說明棒球投手 能夠投出內外角球、上飄球、下墜球,足球員踢出曲球,高爾夫球選手擊出曲 球、滑球等。

旋轉球或圓柱會產 生升力。

圖 9.30 無黏性流體流經圓柱:(a) 不具環流的均匀上游流;(b) 在圓柱中心的自由 渦流;(c) 合併自由渦流與經過圓柱的均匀流合併形成非對稱性流並產生升力。

>> 本章重要公式

升力係數與阻力係數 $C_L = \frac{\mathcal{L}}{\frac{1}{2}\rho U^2 A}, \ C_D = \frac{\mathfrak{D}}{\frac{1}{2}\rho U^2 A}$ (9.24), (9.21)

/本章習題/

除非習題說明中具體指定流體的性質,否則請使 用表 1.4~1.8 和附錄表格中的值。

第 9.3 節

9.3.1 流經平板流體的阻力為 30, 若自由流速加 倍,則新阻力為 30, 此新阻力 30, 大於或小於 30, ? 相差多少?

9.3.2 一部全新設計的油電汽車其阻力係數預估約 0.21,若車子的截面積為 2.8 m²,則當車子以 25 m/s 的車速行駛穿越靜止的空氣時,車子所受的空 氣阻力為何?

9.3.3 一名 82 kg 的男子在 -7℃ 和 101 kPa 的空 氣中使用半球形降落傘。計算人的最終速度在不超 過 6 m/s 的情況下,所需的降落傘直徑,忽略降落 傘的重量。

9.3.4 汽車的空氣動力阻力取決於汽車的「形狀」。 例如,圖 P9.3.4 所示的汽車在車窗和車頂關閉的情 況下,阻力係數為 0.35。打開窗戶和車頂,則阻力 係數增加到 0.45。若車子在窗戶和車頂打開的情況

窗戶和車頂關閉: C_D = 0.35

圖 P9.3.4

窗戶和車頂打開: *C_D* = 0.45

下,要克服空氣阻力所需的功率與車子在窗戶和車 頂關閉且車行速率為 29 m/s 的情況下相同,則窗戶 和車頂打開情況的車子速率為何?假設正面面積保 持不變。回想一下,功率是力乘以速度。

9.3.5 一位女士騎自行車沿著 18% 的斜坡向下行 駛。在迎面而來的 25 km/hr 的風中,她的速度為 25 km/hr。空氣溫度為 15°C 和 101 kPa。假設影響速率 的唯一力是重量和阻力,則計算正面面積為 0.6 m² 和組合質量為 54 kg 時的阻力係數。推測騎者是處 於直立姿勢還是賽車姿勢。

9.3.6 一艘伐木船正以 1.5 m/s 的速度在 1 m/s 的河流流速中拖曳一根原木。原木直徑 0.5 m,長 2 m。
(a) 如果原木的軸與水流平行,則估計所需的功率。
(b) 如果原木的軸垂直於水流,估計所需的功率。
(c) 解釋實際所需功率可能與你的估計不同的原因。
9.3.7 試求一個直徑為 0.3 cm 的小圓盤上的阻力,該圓盤以 3×10⁻³ m/s 的速率穿過比重為 0.87、黏度為水的 10,000 倍的油。圓盤垂直於上游速度定向。
如果圓盤平行於流動方向,阻力減少了多少百分比?

9.3.8 若將三角形平板平行於自由流放置,如圖 P9.3.8 所示。假設流動為層流邊界層型態,試沿著 平板對壁剪應力予以積分,以求出平板一側的摩擦 阻力。

本章習題 🚫 9-25

圖 P9.3.8

9.3.9 一個高 0.5 m、長 1.2 m、寬 1.3 m 的矩形車 頂置物架緊緊裝在車頂上。試估算當置物架以 105 km/hr 的速度穿破靜止空氣且相較於汽車僅以 105 km/hr 的車速行駛,兩者所需動力相差多少?

9.3.10 一條長 305 m、寬 30.5 m 的接駁船在 16°C 的水中浸沒在 4 m 的深度。它以 19 km/hr 的速率被 拖走。估計接駁船上的摩擦阻力。

9.3.11 如圖 P9.3.11 所示,卡車的側面附有一個薄 而光滑的標誌。估計卡車以 89 km/hr 的速率行駛 時,標誌上的摩擦阻力。

■ P9.3.11

9.3.12 一個熱氣球的外形近似於球體,倘若球體體 積為 2000 m³、重量 2.2 kN(包括乘客、座籃、氣 球體等)。外界空氣溫度為 27℃,氣體內的空氣溫 度為 74℃。若大氣壓為 101 kPa,假設氣球在穩定 狀態下上升,試估算熱氣球的上升率。

9.3.13 一物體在降落傘打開之前以 30 m/s 的速度 下降。滑槽打開時的最終下降速率為 3 m/s。計算並 繪製從滑槽打開時起,作為時間函數的下降速率。 假設滑槽立即打開,阻力係數和空氣密度保持不 變,並且流動是準穩態的。

9.3.14 如第 9.2.6 和 9.3.3 節所述,粗糙高爾夫球上的阻力可能小於相同大小的光滑球上的阻力。若一個直徑為 10 m 的球形水箱放置在 20 m 高的支架上,是否應該有一個粗糙的表面,以減少刮風時支架底部所需的力矩?請解釋之。

9.3.15 如圖 P9.3.15 所示,強風可以通過圍繞點(1),將高爾夫球吹離發球檯。計算執行此操作所需的風速。

圖 P9.3.15

9.3.16 20 m/s 的風吹向 20 m 高、0.12 m 直徑的旗 桿。(a) 求桿底部的錨固力矩;(b) 如果一根 2 m × 2.5 m 的旗子附在桿子的頂部,則求出錨定力矩。旗 的阻力係數數據見圖 9.25。

9.3.17 當自行車騎士處於比賽狀態,若騎士在逆風 中以 24 km/hr 的速率踩到 32 km/hr 時會比在靜止的 空氣中以 24 km/hr 的速率前進,需要增加多少功 率?在靜止的空氣中以 24 km/hr 的速率踩踏板,騎 士以直立騎姿,而不是賽車騎姿需要多少功率?

9.3.18 有一天並沒有任何風,而你駕車從 A 地到 B 地再返回 A 地,倘若你以等速率 U 行駛,而消耗的 汽油為 x 公升。假設你以相同的速率重新進行上述 行程,但當天起風且穩定的風係由 B 地吹向 A 地。 請問起風後的這趟行程中,你駕車所消耗的汽油會 少於、等於或多於 x 公升?請適當的分析以支持你 的答案。

9-26 🚫 Chapter 9 經過沉體的流動

9.3.19 一輛 25000 kg 的卡車在沒有剎車的情況下 滑下 7% 的陡坡,如圖 P9.3.19 所示。卡車的最終 穩態速率 V 取決於重量、滾動阻力和空氣阻力之間 的平衡。如果卡車在混凝土上的滾動阻力為重量的 1.2%, 並且以正面面積計算的阻力係數為 0.76, 求 $V \circ$

圖 P9.3.19

9.3.20 如圖 P9.3.20 所示, 若採用適當的空氣導流 板,將可使卡車的空氣動力阻力予以降低。假設卡 車以 105 km/hr 的速率高速行駛,若將阻力係數從 $C_D = 0.96$ 減低至 $C_D = 0.70$ 時,相對應的馬力將可 減少若干?

(b) $C_D = 0.96$

圖 P9.3.20

9.3.21 估計一個普通人(見圖 9.25)在靜止的標 準空氣中,4 分鐘內跑完 1.5 km 所需的能量。如果 你將人建模為 1.8 m 高和 0.6 m 直徑的圓柱體,則比 較你的估計。

9.3.22 比較水中直徑為 0.3 cm 的氣泡的上升速度 與空氣中直徑為 0.3 cm 的水滴的下降速度。假設兩 者都如一個實心球體。

9.3.23 比重 SG=1.8, 重量 500 N 立方體以恆定速 度 U 落入水中。試求 U, 若立方體下落方位角度如 下: (a) 如圖 P9.3.23(a) 所示; (b) 如圖 P9.3.23(b) 所示。

9.3.24 如圖 P9.3.24 所示,一個 0.30 m 直徑的軟木 球 (SG=0.21) 繫在河底的一個物體上。估計河流的 流速。忽略纜繩的重量及其上的阻力。

圖 P9.3.24

9.3.25 一顆 2 mm 直徑、比重 2.9 的隕石在 50,000 m 的高空正以 6 km/s 的速率飛行,若該高度的空氣 密度為 1.03×10⁻³ kg/m³,而阻力係數在如此高馬赫 數下為 1.5, 試求該隕石的減速度值。

9.3.26 海上定位標記器是一種通常從飛機上投放的 產生煙霧的裝置,用於標記海洋中的參考點。在風 洞中進行測試,以確定其在飛機以 90 m/s 的速度運

本章習題 🚫 9-27

載時的阻力。該標記器是一個具有平坦末端的圓柱 體,直徑為 0.13 m,長度為 1.2 m。在攝氏 -12°C 的空氣中,計算在氣流與圓柱體軸平行的情況下標 記器的阻力。

9.3.27 圖 P9.3.27 中所示的油漆攪拌器由兩個圓盤 組成,圓盤連接到以 80 rpm 的速度旋轉的細桿末 端。塗料的比重為 SG = 1.1,黏度為 $\mu = 96 \times 10^{-2}$ $N \cdot s/m^2$ 。如果忽略液體的誘導運動,估計驅動攪 拌器所需的功率。

圖 P9.3.27

9.3.28 透過適當的流線形設計,飛機的阻力係數減 少了 12%,而正面投影面積保持不變。在相同的功 率輸出下,飛行速度增加了多少百分比?

9.3.29 (參閱 9.3.3 節「流體新知:具有凹窩的球 棒」)一支直徑為 9 cm 具有凹窩的棒球棒,若欲充 分地利用凹窩所產生的阻力降低效應,那麼球棒在 空氣中移動的速度應為何?雖然具凹窩的球棒與具 凹窩的高爾夫球有所差異,但可假設球棒上的凹窩 對由層流過渡到紊流的影響,與高爾夫球上的凹窩 是相同的。

第9.4節

9.4.1 以 183 m/s 速率飛行,且展弦比為 6 的矩形 機翼能產生 4.4 kN 的升力,若其升力係數為 1.0, 則此機翼的翼展長度為多少?

9.4.2 Piper Cub 模型飛機具有機翼面積 17 m²、總 重量 7784 N及 185 km/hr 的巡航速率, 試求上述條 件下飛機的升力係數。

9.4.3 如圖 P9.4.3 所示, 舊飛機的機翼通常使用提供交叉支撐的鋼絲來加強。如果機翼的阻力係數為

0.020 (基於平面區域),則求鋼絲支撐的阻力與機 翼的阻力之比。

速度:113 km/hr 機翼面積:14 m² 線材:長度 = 49 m 直徑 = 0.13 cm

圖 P9.4.3

9.4.4 一個設計組對於飛機機翼有兩種可能的機翼 設計 (A 和 B)。任一機翼的平面面積為 130 m²,每 個機翼必須提供 1,550,000 N 的升力。

圖 P9.4.4

飛機將以 700 km/hr 的速度在 10,000 m 的高度在標 準大氣中飛行。升力和阻力係數如圖 P9.4.4 所示。 兩組升力和阻力係數可得到飛機每單位機翼面積的 總升力 *£* 和總阻力 30,使得

 $\mathcal{L}_{\text{airplane}} = \frac{1}{2}C_L \rho A_{\text{wing}} U^2$

和

 $\mathcal{D}_{\text{airplane}} = \frac{1}{2}C_D \rho A_{\text{wing}} U^2$

9-28 🚫 Chapter 9 經過沉體的流動

其中 U 是飛機速度。你會推薦哪種機翼設計?支持 你的推薦。

9.4.5 當空氣流過**圖 P9.4.5** 所示的機翼時,邊界層 外的速度 *u* 如圖所示。估計這些條件的升力係數。

圖 P9.4.5

9.4.6 試證明在無動力航行時(升力、阻力與重力達成平衡),滑翔傾斜角 θ 可表示成 $\tan \theta = C_D/C_L \approx$ **9.4.7** 如果波音 777 飛機的升力係數是阻力係數的15 倍,如果發動機失去動力,它能從9 km 的高度滑

翔到 129 km 外的機場嗎?解釋之(見習題 9.4.6)。
9.4.8 如果特定飛機在海平面上所需的起飛速率是
54 m/s,那麼在丹佛(海拔 1524 m)需要多少的速度?使用附錄 B 中的數據。

9.4.9 商用客機通常在相對較高的高度 (9 km 至 11 km) 巡航。討論在如此高的高度 (而不是 3 km) 飛行如何可以節省燃料成本。

9.4.10 (參閱 9.4.2 節「流體新知:為何需要小 翼?」)在某些飛機上裝置設計妥當的小翼可將阻 力係數降低 5%。試問在引擎推力不變之下,藉由小 翼的裝置可增加飛機速率的百分比為多少?